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The basics of Interpolatory Model Reduction

Summary. The study of interpolatory reduction methods can be subdivided in three areas:

(1) Interpolatory projections,
(2) the Loewner Framework, and
(3) #2 Optimal Reduction known as IRKA.

Below, we will discuss these three aspects, first as applied to linear systems. Subsequently, we
will outline their generalization to bilinear and more generally non-linear systems.

Set-up. To start with, we consider linear, time-invariant systems
Ex = Ax + Bu, y = Cx, (1)
assumed to be scalar for simplicity, i.e.
E, AcR™" B, CT eR".
We will denote this realization of the system by means of the quadruple (C, E, A, B). The
associated transfer function is
H(s) = C® (s) B,
where ® denotes the resolvent

o(s) = (sE—A)"LecC™". (2)
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Interpolatory projectors (Skelton, Grimme-Van Dooren)

We introduce the following quantities which will play the role of projectors in the sequel. For
this we need two sets of complex numbers namely p;, i=1,---,q,and }j, j =1,---, k, which
we will refer to as left and right interpolation points:

Co ()
R =[®N)B - ®XN)B]ecC™ and 0= : e CIxn. (3)

Co(pq)

These are called the generalized controllability and the generalized observability matrices.

Proposition.
With A = diag[A1, -+, M), M =diag[u1, -, pgl, em=[1 --- 1]T €R™,
the matrices R and O satisfy the Sylvester equations:

ERA — AR = Be] ‘ and [ MOE — OA = e,C | (4)
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Construction. For arbitrary k and g, the following relationships hold:

H(pa)—HA1) . H(u1)=HQ)
H1—A1 H1— Ak
E=OER=— : : = —L e C*K, (5)
H(pg)—H(\1) . H(pg)—H(\)
Hg—A1 Hg—Ak
mH()—=MHMA) p1H(p1) =X H(A k)
H1—A1 H1— Ak
A=0AR=— : : =-Ls; e C™*,  (6)
pgH(ug)—MH(N1) pgH(ug) —AkH(AL)
Bg—A1 Hg— Ak
H(p1)
B=0B= : =VeC™™ and (7)
H(pq)
€=CR=[H1) - HOXN) ]=weC* (8)

The resulting quadruple (W, L, Ls, V) is called the Loewner quadruple.
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Proposition. Upon multiplication of (4) with O on the left and R on the right, we obtain:

Ls—LA=VR and Ls—ML=LW (9)

By adding/subtracting appropriate multiples of these expressions it follows that the Loewner
quadruple satisfies the Sylvester equations

ML —LA =VR - LW and MLs — LsA = MVR — LWA.

Interpolation property of reduced systems.
Given the projectors X, Y € (C"Xk, let the reduced quantities be
L = X*LY, Ls = X*L;Y, V= X*V, L = X*L, W= WY, R=RY.
The associated A and M must satisfy the projected equations resulting from (9), i.e.
[,~LA=VR and Ts—ML=0W (10)
Let the associated EVDs be:
A= TADAT ! = eig(Ls — VR, L), M =TyDyT,,' = eig(Ls — LW, L).

Consequently, equations (10) are transformed to

Ls = Ty, 'LTa, L = T,'LTy,
[.—LD\=VR, Li—DyL=IW where { V = T,V, [ = T\
W = WT,, R = RT,

Conclusion: for the reduced system the right/left data triples are (D, W, R), (Dp, V, L).



Lemma

@ For g = k < n, define the transfer function H(s) = €(sE — A)~!B. The interpolation
conditions below are satisfied:

A(ui) = H(p) and AN) =H(;) for i=1,--- k. (11)

If k = q = n, the Loewner quadruple is equivalent to the original quadruple (C, E, A, B).
@ For arbitrary k and g (i.e. k, g < or > n) the Loewner quadruple interpolates the data,
even if the pencil (s, L) is singular. This is to be interpreted as follows: that
(Ls = AiL)e; =V and e/ (Ls — L) =W.
Hence We; =w;, i=1,---  k, and ejTV =vj,j=1,---,q. Therefore the transfer
function of the Loewner pencil interpolates H(s) at the left and right interpolation points.

@ Ifk, g>n, let|L=UX,V], U, eRI*", ¥, cR™*" V,eR* | bea rank

revealing SVD decomposition of IL, where r < k, q, is the exact of the numerical rank of
L. Let

E=U/LV,eC™", A=ULV, € C™*", B=U]VeC’, C=WuU,eC>*". (12)

Then the following approximate interpolation conditions are satisfied:

H(w) ~H(w), i=1,---,q, and H\)=H), j=1,--,k
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Optimal H> reduction. The Hy norm of a stable system X = (C,E,A,B), is:

1 +o0 1/2
17, = (7/ trace [H(iw)H* (—iw)] dw) :
T J—oo

where H(s) = C(sE — A)~B, is the system transfer function. The goal is to construct a

reduced system X, of order k, such that

Xy = argmln HZ ZH
deg(£)=

This optimization problem is nonconvex. We seek therefore reduced models that satisfy

first-order necessary optimality conditions. These turn out to be interpolatory conditions. Let

the rational function Hy solve the optimal #H, problem and let 5\,- denote its poles. Assuming

that m = p = 1, the following interpolation conditions hold:

. . d d
H(=A7) =Hi(=A7) and  —H(s) = —H(s) :
ds —Ax ds — 5

S
i i

Thus the (locally) optimal reduced system with transfer function Hx matches the first two

moments of the original system at the mirror image of its poles.
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IRKA (Beattie-Gugercin-Antoulas). The associated algorithm is as follows. Fix the dimension
of the reduced system to k < n, and pick the left and right interpolation points to be the same:
ANi=up;€C,i=1,--- k. Then, repeat:

@ Define the generalized controllability and observability matrices R and O by means of the
scalars A1, -+, Ak

@ Define é, IA\, I§, and € as in the projection lemma above, and compute new scalars 5\,-,
i=1,---,k, as follows

{\i} = —eig(A, E).

@ If {\} = {)}, the system (€, E, A, B) is a (locally) optimal Hy approximant of the
original system. Otherwise go to step 2., and repeat until convergence.

Remark The projectors in the above procedure can also be computed by solving the
corresponding Sylvester equations (4).

In the generalization to bilinear systems however, the natural way to compute the projectors is
by solving appropriate (bilinear) Sylvester equations. Interpolatory conditions also exist, but are
more involved to formulate and deal with. ]
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9 The Loewner framework
@ Generalized inverses and rectangular systems

@ lllustrative examples
@ The Loewner algorithm

@ Data-driven model reduction: bypassing PDE discretization

10 / 49



The Loewner matrix

Given: Karel Lwner (1893 - 1968)

row array (#j,vj), j=1,--,q,
column array (Aj,w;), i=1,--- k,

the associated Loewner matrix is:

Vi—wio L VI—W
H1— AL H1— Ak
L= . . . c quk Ch. Loewmer
— ' — e Born in Bohemia
Hg—A1 Hg—Ak

e Studied in Prague under Georg Pick

If w; = g(\), vj = g(u;), are samples of g: e Emigrated to the US in 1939

e Seminal paper:

Main property. Let L be as above. Uber monotone Matrixfunctionen,

Then k,q>degg = rankl =degg. | | Math. Zeitschrift (1934).
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Model reduction of descriptor systems

A descriptor-form representation is a set of differential and algebraic equations (DAEs):
d
p g Eax(t) = Ax(t) + Bu(t), y(t) = Cx(t)+ Du(t),

where E,A € R"™" BegR"™™ CecRPX" DeRP™.

Remark. The D-term. Consider a rank-revealing factorization
D =D;D; where D; € RP*P, D, € RPX™,

and p = rank D. It readily follows that:

E A B
o[ e[t alee[Besie o

is a descriptor realization of the same system with no D-term (i.e. Ds = 0).
Reason: the Loewner framework yields precisely such descriptor realizations.

Model reduction: construct reduced-order DAE systems of the form:

5. IAEE)“((t) = A%(t) + Bu(t), §(t) = €x(t) + Du(t),

where E,AcR™", BeR™*™ CeRP*", DeRPX™,
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Descriptor representation of interpolants and rational approximants

Given: right data: (A\;;r;,w;), i=1,---,k, and left data: (;Lj;EJ’-‘,vj‘), j=1--

) q'
Problem: Find rational p X m matrices H(s), such that:
H()\,’)l’,’ =W, ej‘kH(Mj) = Vf,

where H(\;), H(g;) € CP*™, are for instance, S-parameters.

Right data:
A1 R:[r1 rp, - l’k] E(Cka,
A= c (Ckxk
Ak W:[W1 wy - Wk]E(CpXk,

Left data:

M1 £ vi

M — eC™9 L=| : [eCi* v=| : | eCixm
Hq Z; v

A A.J. Mayo and A.C. Antoulas, A framework for the solution of the generalized realization
problem, Linear Algebra and Its Applications, vol. 425, pages 634-662 (2007).
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Descriptor representation: the Loewner pencil
Data: H()\,‘)I‘,‘ = wj, ZjH(/J,j) =Vj.

—— IR The shifted Loewner matrix L € C9*X is;
e Loewner matrix L € IS:

virg—fiwg vire—£3wy H1—A1 1=k
H1—A1 H1—A _ . .
. . g ]]“5 - . . N
L= : o : 1gVqr1 —LgW1 A1 o LegVqrk —LqWi Ak
Vgr1 —£qw1 L Vgl —LqWy Hg—A1 Hg— Ak
Hg—A1 Hg— Ak

LLs satisfies the Sylvester equation
L satisfies the Sylvester equation

LsA — MLs = MVR — LWA
LA — ML = VR — LW

A A.C. Antoulas, S. Lefteriu and A.C. lonita, A Tutorial Introduction to the Loewner Framework
for Model Reduction, Chapter 8 in Model Reduction and Approximation, pages 335-376, edited
by P. Benner, A. Cohen, M. Ohlberger, and K. Willcox, SIAM, Computational Science and
Engineering CS15, (2017).
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Construction of Interpolants (Models)

o If the pencil (Ls, L) is regular, then

E=-L, A=-L,, B=V, C=W

is a minimal interpolant of the data, i.e., H(s) interpolates the data:

‘ H(s) = W(Ls — sL) "1V ‘

e Otherwise, if the numerical rank L = k, compute the rank revealing SVD:

‘ L =YIX* x Y X, XE ‘

Theorem. A realization [E, A, B, C], of an approximate interpolant is given as follows:
E=-Y;LX,, A=-Y;LsX,, B=Y;V, C=WX,.

Remark. A If we have more data than necessary, we can consider (Ls, L, V, W), asa
singular model of the data. Consequence: The original pencil (Ls,L) and the projected pencil
(A, E), have the same non-trivial eigenvalues.

A A.C. Antoulas, The Loewner framework and transfer functions of singular/rectangular
systems, Applied Mathematics Letters, vol 54, pages 36-47, 2016.
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Proof: the factorization of L, L., V, W

> Recall the Loewner pencil:

Vi — w; iV — \jWj axk
Oro=[525]. (=[] oo
SN TP R wi = Aj

> Define: R: generalized controllability matrix, (: generalized observability matrix

U

C(mE—-A)"!

: E[ ME-A)"IB .-+ (ME-A)"IB]=-L and
C(uqE — A)~? z

| S ——
@]

C(mE—A)~!
: A[ (ME-A)TB - (ME-A)TIB ] =L
C(ugE — A)~L s
| ——

O
Also V=CR, W =OB.
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Proof. (a) Multiplying equation the first Sylvester equation by s and subtracting it from
equation the second one, we get

M(Ls — sL) — (Ls — sL)A = (M — sI)VR — LW(A — sl).
Multiplying this equation by e; on the right and setting s = \;, we obtain
(M =X 1)(Ls — AjL)e; = (M — \;)Vr; =
(Ls — AiL)e; = Vr; = We; = W(Ls — \;L) " 1Vr;.
Thus w; = H(A)r;.
Next, we multiply the above equation by ejT on the left and set s = p;:
e/ (Ls — L)(A — 1) = e LW(A — 1) =
e (Ls — L) =W = eV =2/ W(Ls — L) ~'V.
Thus v/ = £[H()).
(b) With K € CP*™, the Sylvester equations can be rewritten as

ML — LA = (V — LK)R — L(W — KR),
M(Ls + LKR) — (Ls + LKR)A = M(V — LK)R — L(W — KR)A.

Repeating the procedure with the new quantities the desired result follows:

Ls =Ls +LKR, V=V —LK, W=W —KR.
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Construction of interpolants: The case of redundant data

As shown in Mayo and A. (2007), the problem has a solution provided that
L
rank [(L — Ls] = rank [L, Ls] = rank |: L ] = 7,
S

forall &€ {N\}uU{u}.

Consider then, the short SVDs:
T w* L Y, *
[L, L] = YZ, X, { L } =YX X*,
S

where T, ¥, € R7X", Y € C9%", X € Ck*,

Remark. r can be taken as the numerical rank of the corresponding quantities.
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Theorem. The quadruple (Es,As,Bs,Cs) of size rxr, rxr, rxm, pXr, given by:
Es = —Y*LX, As = —-Y*L:X, Bs =Y*V, Cs = WX,

is a descriptor realization of an (approximate) interpolant of the data with McMillan degree
r = rankLL.

Remarks. (a) The Loewner approach constructs a descriptor representation
(]L7 LS, V7 W)7

of an underlying dynamical system exclusively from the data, with no further manipulations

involved (i.e. matrix factorizations or inversions). In general, the pencil (Ls,L) is singular and

needs to be projected to a regular pencil (As, Es).

(b) In the Loewner framework, by construction, D terms are absorbed in the other matrices
the realization. Extracting the D term involves an eigenvalue decomposition of (Ls, L).

of
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Construction of Interpolants (Models)

o If the pencil (Ls, L) is regular, i.e.
®(s) = Ls — sL, is invertible, then

E=-L, A=-L;, B=V, C=W

_ —il
is a minimal interpolant of the data = ‘ ) S BISE ‘

o If ®(s) =Ls — sL, is singular, let
®(s)* be a generalized inverse of ®(s) = ‘ H(s) = W o(s)" V ‘
(Drazin or Moore-Penrose).

e In the latter case, if the numerical rank L = k, compute the rank revealing SVD:

‘ L=YEX* ~ Y, 5, X;

Theorem. A realization [C,E,A,B], of an approximate interpolant is given as follows:

E=—Y;LX,, A=-Y;LX;, B=VY;V, C=WX,.
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A simple example Consider the system

() = x(t) s
%) = —xa(t)—x(e)+u() * =R = HEO=GToT

We now wish to recover state equations equivalent to the ones above from measurements of the
transfer function.

Data: obtained by evaluating the transfer function at A\; = %, A =1, as well as pu; = —%,
u2 = —1. The corresponding values of H are collected in the matrices
w=(2 1) v=(-2 —1)7
- ( 73 /0 - ( BE :

Furthermore with R=[1 1], L = R7T, we construct the Loewner pencil:

S HHES |

Since the pencil (Ls, L) is regular, and the rank of both matrices is two:

[ 1IN

~io B8

WIN - WIN
[t

H(S) = W(D(s)_lv = 52—"_%4-17 where d)(s) =Ls—sL.
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Hence, the measurements above yield a minimal (descriptor) realization of the system in terms

of the (state) variables &;, &,:

% &() + %él(t)
g&(t) + %éz(t)
y(t)

— 77&1(2) + 3u(t),
- %51(‘7) - %§2(t) + u(t),
%ﬁl(t) + %ﬁz(t)

Question: what happens if we collect more data that necessary:
—di 1 3 —di 1 3
A=diag (3 1 3 2), M=diag ( -3 -1 -3
In this case, the associated measurements are

w-(3 % %

i
—
<
Il
—
|
wIiny
|
—
|
~io
|

and with R=[1 1 1 1], L=RT, the Loewner pencil is:

28 8 4

20 2 8 _ 0 | 4 2
21 3 57 21 21 57 21
6 2 10 3 _4 _1 _4 _1
7 3] 19 7 7 3 19 7
L= 5 Ls =
4 10| 52 16 _4 _8 | _36 _10
7 21 133 49 7 21 133 49
8 1 16 5 _ o _1 144
21 3 57 21 21 3] 57 21
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It turns out that we can choose arbitrary X,Y € R**2, such that Y7 X is nonsingular, e.g.

-1 0
| o 1 r_[o 1 o0 -1
X=1 o o ’Y_[l -1 -1 1]’
-2 1

so that the projected quantities

6 1
Y _ 6 1 D STrse || 7 @
W—WX—[_7 _ﬁ]’ L=Y I[‘X_|: 18 1 :|’

49 147

48 19

R 0 1 R _1
]LS:YT]Lsxz[ 21}, v:YTv:[ 3]7
49 147

constitute a minimal realization of H(s):

H(s) = W (Es — si)_l v s
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:ﬁ, from the following
measurements: A1 =L Ao =2 A =3 =-Limp=-2%ps=-3W=[}, 1, FH]=VT;

R=[1 1 1]=LT; it follows that

Here we would like to recover the rational function H(s)

0 =1 =i 1 3 i
10 10 2 10 5
_ 1 =il _ 3 1 7
L=l 0 % |»L=|1% 5 %%
11 107 1
10 50 5 50 10
We choose the following projection matrices
5 -5
=|1 o/, Y=xT
0 1
Thus the projected quantites are
o -2 157 643
_ _ 50 _ 10 50
]LOY]LX[51 0 ], Lsog = YLsX = 643 53 ],
50 50 5
27
27 12 o 6
WO:WX:L—O,—?},VO:YV: _?],RO—RX—[Q —4],L0:YL:[_4]

Therefore it readily follows that we recover the original rational function:

1
s24+1°
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Example. Next, we wish to recover the polynomial ¢(s) = s?, my means of measurements.
From A =diag( 1, 2, 3), M=diag( —1, —2, —3), W=V* =11, 4, 9], we calculate

0 1 2 1 3 7
L=| -1 0 1|, Li=|3 4 7
2 -1 0 7 7 9

Since rank (L) = 2, but rank (Ls) = 3, the McMillan degree of the minimal interpolant is 2.
Therefore A = —Ls, E= —L, B=V, C= W is a descriptor realization of the McMillan degree
2, interpolant: ¢(s) = W(Ls — sL)7V.

We now consider two additional points: A = diag[l, 2, 3, 4], M = —A. Then
W =V*=[1, 4, 9, 16]. Thus the Loewner pencil is updated by means of a new row and a
new column:

o 1 2 3 1 3 7 13
-1 0 1 2 3 4 7 12
L= o 1 o 1| k= 7 7 9 13
-3 -2 -1 0 13 12 13 16

Indeed the pencil (Ls, L) has a (generalized) eigenvalue at 0 and a corresponding Jordan chain
of length 3:

1 2 —Z
=5 =@ 4

Vo = 1 , V1= 0 , V2 = 0 3
0 1 1

satisfying: Lvgp =0, Lsvp=Lv;, Lsvi =Lvy.
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Alternatively one may compute the QZ factorization of (Ls,L), to obtain an upper triangular
pencil with diagonal entries:

—3.3467107% —1.873310 1/ | 1.453410°8 +—  zero eig

—2.022810~7 +1.1323/ 8.784210~8 +— zero eig
5.36531015 1.579410-15
3.9262 0 < zero eig

Consequently, the quotients of the first, second and fourth entries of the diagonal yield the three
zero eigenvalues, while the third diagonals indicate an undetermined eigenvalue.

We will now project the quadruple (Ls, L, V, W) to get a minimal realization. The projectors are
chosen randomly (use command round(randn(4,3)) in Matlab):

j é 7(1) 10 1 -1

T.i= To=| -1 1 -2 =2 = det(T2T1) =30#0,
o3 00 0 1
-1 2 1

which shows that the condition of corollary ?? is satisfied. Consequently, the projected
quadruple yields a minimal realization of the underlying rational function:

-5 —4 11 5 =22 21
ToLT; = —19 16 -5 |, ToLsT; = 128 36 —154 |,
7 -4 -1 —41 -6 43
and hence [WT1] - [(T2LsT1) — s - (Tg]LTl)]_1 S [TaV] = %2 = ¢(s). [
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There is another way to express the above relationship avoiding arbitrary projectors.
Basic ingredients: the Moore-Penrose generalized inverse and the
Drazin generalized inverse.

The Moore-Penrose inverse of the (rectangular) matrix
M e quky is denoted by mMP @ ]kaq, and satisfies: || Given a square matrix M € R9X9, its index is the least nonneg-
vp mP vP mP ative integer k such that rank MEHL = rank M*.
(a) MMY"M =M, (b) MY"MM =M™, The Drazin i £ M is th . ix MD satisfying:
MP} T MMMP (d) [MMPM] T e Drazin inverse of Is the unique matrix satistying:
c MM = s
E\A)"/’PE\A (@) MFHIMP = Mm% (b) MPMMP = MD,
: (c) MMP = MPMm.

This generalized inverse always exists and is unique.

In the sequel we will be concerned with rectangular n X m polynomial matrices which have an
explicit (rank revealing) factorization as follows:

M = XAY',

where X, A, Y have dimension g X n, n x n, n X k, n< q, k, and all have full rank k.

The Moore-Penrose generalized inverse is: If g=k and Y'X is invertible, the Drazin generalized inverse is:

MMP = vy Ty~ ta = (xTx) " 1x . MP = xyTx)"ta ey Tx)"iv T

A.C. Antoulas, The Loewner framework and transfer functions of singular/rectangular systems,
Applied Mathematics Letters, 54: 36-47 (2016).
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Example (continued). The quantities needed are the generalized inverses of

_20s _ 4 _2s 4 _ 28s 2 _8s
21 21 3 57 57 21 21
_6s _ 4 _2s 1 _10s _ 4 _3 _1
7 7 g B! 19 19 7 7
®(s) =Ls — sL = =XA@s)Y'.
_4s _ 4 _10s _ 8  _52 _ 36 _16s _ 10
7 7 21 21 133 133 49 49
_8s _ 10 _s_1 _l6s _ 14 _5s _ 4
21 21 B} B} 57 57 2 21

Let the common range of the columns of L, Ls be spanned by the columns of X and the
common range of the rows of the same matrices by the rows of Y; it follows that

1 0
0 1 1 0 _1
X= 3 s |, Y= » o = det(YX) #0.
-7 7 0o 1 19 7
1
-3 1

Thus with A(s) = ®(1:2,1:2)(s) there holds

mMp _ 1 1
()™ = gooa0667 24st1

6076 (32301s — 391
—2058 (294945 + 15609
—26068 (5715s + 1523
—98 (1797669s + 409322

14 (151688515 + 1670036)
—147 (4175975 + 261503)
—1862 (83663s + 30704)
—49 (3777710s + 1247231])

—28(11610185s + 7274073
204 (225182s + 281171
3724 (54617s + 48189

98 (2527157s + 2123670
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D_ _ 1 1
®(s)” = 7557360 2rstl

and
—84 (234677s + 152881)

126 (319565 + 42829)

684 (19079s + 17063)

42 (3305455 + 281368)

204 (106525 — 13755)
—147 (118855 + 4)
—798 (41845 — 2171)
—147 (225375 — 13751)

588 (19079s — 641

—4788 (18855 + 441

42 (3305455 + 29086)

—342 (316315 + 10550)
—21 (5333785 + 157609)

)

—882 (4184s + 2255) —63 (676115 + 42841)
)
)

—294 (31631s + 6124

In the rectangular case, where there are two less right measuremnents, i.e we only have
N = diag [%, 1], while M remains the same, the right values are W = W(:, 1 : 2); hence

— 20s
21

%

5(5):E5 —sL=

IS
o

o
&~

S =JENIESENTEN SIS

N
=

R

&

=
1=
&

N
=

win

oo =

W=y

has dimension 4 x 2, where Y =Y(1:2,1:2). In this

—4767s — 3402

1827
2 s

2037
2

=xa@G)Y,

-

case the Moore-Penrose inverse is

3087s + 294

‘“(S)AAP

1
737 (s> +s+1) [ 58385 + 5250

—1596s + 903

3207s + 138 }

—4326s — 1218  —4515s — 1722

= ‘ww(s)"’”’v = Wo(s)"PVv = Wa(s)P v = H(s)‘

’ Thus, the Loewner framework allows the definition of rectangular and/or singular systems. ‘
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Revisit: Construction of Interpolants

o If the pencil (Ls, L) is regular, i.e.
®(s) = Ls — sL, is invertible, then
E=-L, A=-L;, B=V, C=W —
is a minimal interpolant of the data = ‘ Al = e ‘

o If ®(s) =Ls — sL, is singular, let
®(s)# be a generalized inverse of ®(s) = ‘ H(s) = Wa(s)* v ‘
(Drazin or Moore-Penrose).

e In the latter case, if the numerical rank L = k, compute the rank revealing SVD:

L =YEX* = Y 5, X;

Theorem. A realization [C,E,A,B], of an approximate interpolant is given as follows:

E=—Y/LX,, A=-Y/LX;, B=Y}V, C=WX,.
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The Loewner Algorithm (simple version)
@ Consider given (frequency domain) measurements (s;, ¢;), i=1,...,N.

@ Partition the measurements into 2 disjoint sets

frequencies :  [s1,---,sn] = [A1,ooo Ay w1, pgl, k+g=N,

values: [p1,--,¢n] = [w,o,wi], [vi,ovgl = W, VT

© Construct the Loewner pencil:

- (vi— Wj)lef'wk L, = (uivi—)\jvw)jzl,-",k.
Bi= A/ sy g =X S

@ It follows that the raw model is: (W, L, Ls, V).

@ Compute the rank revealing SVD: L ~ YIX* (¥ € R™*").

@ The reduced model (E E, B«, §) is obtained by projecting the raw model (W, L, Ls, V):

C=WX, E=-Y*LX, A=-Y*L,X, B=Y*V.

@ Reference: S. Lefteriu and A.C. Antoulas: A New Approach to Modeling Multiport

Systems from Frequency-Domain Data, IEEE Trans. CAD, 29: 14-27 (2010).
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An illustrative example

Illustration of the relationship between the McMillan degree, the degree of minimal realizations,

and the D-term.

0 1 0
A=|0 0 1 ,c_[é (1’ 8],3:&,0:“ i H N
0 0 O
1 1 1
1y1 L+1 L+
H(s)=C(sl—A)"'B+D=| ° N N
1 141 34
Let the interpolation points be:
M:dlag[17 17 _%7 _%7 _%7 _%]7
A:dlag[%7 %7 %7 717 717 71’ 27 2’ 2]
The interpolation values w; = H();), v; = H(;), i = 1,2,3, are:
[3 5 9 o 2 o0 | 3/2 5/4 9/8
Wi=11 3 5271 0 2|""3T| 1 3/2 5/4°
2 2 2 -1 5 -7 [-3 17 -63
Vi=l1 2 27T 1 -1 5 °V3T| 1 -3 a7 |
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This corresponds to matrix interpolation (the values considered are matrices) as opposed to
tangential interpolation (which will follow next)

3 5 9
2 2 2 w=[3 5 9]0 20|35 § 3
1 2 2 1 3 5|1 0 2|1 5 2|
-1 5 7
LA 1 -1 5 |’ 1>
-3 17 —63 R=[l3 I35 15, L=| 1
1 -3 17 I,
1 3 7
-2 -6 -14| 1 0 Ll -3 -3 —¢
0 -2 -6 0 1 0| 0 -3 -3
4 0 16| -2 6 -—14 1 =8 % 6
= L = 2 RXQ
0 4 0] 0 -2 6| 0 1 fg © ’
8 —-16 9| -4 20 -8| 2 -7 2
0 8 —-16| 0 -4 20| 0 2 -7
1 1
1 -1 5|1 SRR
1 1 -1]1 211 1 2
I
and g = 1 5 1 1 -1 7 1 2 -3 c RGXQ.
11 501 1 -1]1 1 2
I 9 —-15|1 -3 211 3 -6
11 9|1 1 -3|1 1 3

It readily follows that, while rank L = rank Ls = 3, the rank of [L; Ls] is equal to the rank of
[L, Ls], which is equal to 4. Furthermore the rank of {IL — Ls is also 4, for all £ € {u;} U {);}.
Consequently the dimension of the minimal realization is r = 4.
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Tangential interpolation. If we define the index set | =[1 2 3 4], we get:

NI, l)=diag [ 3 5 5 -1],M(I)=diag[1 1 -3 -3 ],
2 2 2
3 5 9 0 1 2 2
W(?’) - |: 1 3 5 1 :| 9 V(Ia ) - _1 5 _7 k]

1 -1 5

-2 -6 -14 1 1 -1 -5 1

0 2 -6 0 1 1 -1 1

Ly ) = 4 o 16 —2 |PWD=17 5 1 1

0 4 0 0 1 1 5 1

Since condition (18) is satisfied with r = 4 and the rank of the Loewner matrix is 3, we recover
a minimal descriptor realization with incorporated D term:

W(, N(Ls(1, 1) — sL(/, 1)) "IV(1,:) = H(s).

An alternative way to obtain the interpolant is to project the original matrices by randomly
generated projectors:
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r o0 1 -1 17
0 0 1 -1
0 0 O 0 0 1 1 - v v
011 00 1 L -t 01
Y7 = ,X=| -1 -1 0 o0 =
1 1 1 -1 1 1 0 1 1 1
0 1 0 0 0 -1 0 0 1 1
0 1 0 0
L 1 0 1 -1 ]
—19 10 21 19 12 6 1 —4
33 3 L 14 18 16 5
Es=1 s65 _103 _es7 _ou |>A6=| 63 a1 1 127 |°
8 4 8 8 4 2 4 1
B 35 _9%  _6 25 5 5 15
4 2 4 4 2 2 2
L= o/ 65 45 37 13
B, — 1 4 12 C s 4 8 8
= —1 24 —b54 |97 | 29 1 25 3
0 5 -15 2 ‘
= C5(A5 = SE5)7IB§ = H(S)
We thus obtain a different (equivalent) descriptor realization with incorporated D term. ]
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Example: a discretized Euler-Bernoulli beam

e System of order n = 348 (obtained after discretization) representing a clamped beam.

e )V =60 frequency response measurements, sy = jwy, with wy € [—1,—0.01] U [0.01, 1].

o Construct 30 x 30 Loewner pencil and Y, X € R30%12 from the SVD.
e Project to get reduced model of order r = 12.

107" 10° 10’ 10°

-10} ©

-06 -05 -04 -03 -02

(1,1) Original and data

(1,2) Singular values of L.

(2,1) Original & reduced FR

(2,2) Poles original & reduced
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Reduced

model from frequency response measurements

Data frequency response [|S; ;|[, i,j = 1,2.

1001 S-parameter measurements between 10-18 GHz (CST)

Data two singular values.

I
AT

Singular values of 1001 X 1001 Loewner matrix

‘Singular values of

‘Sigma plot: freqe (118010, max value 10013,

Singular-value fit of model kK = 72

S-parameter-error: € [10~°,10~ %]

red k=72

Two singular values of model: w € [0, 10THz]

it

Sigma plot. Loewner model in red, k = 72

E!
!
\
\
\
-~ - \
; - 3
i - \
. - N
. A
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An Euler-Bernoulli beam

_ 0 ow _ 2w(L,t) Bw(L,t) _
Bc w(0, t)3_ 0, 3%(0,1) 4_ 0, E’T + cql o = 0,
8°w(L,t) % w(L,t) _ _ Ow(L,t)
_EIT — cql 30t u(t), y(t) = —or
O?w(x,t) 02 9%w(x, t Bw(x, t
7W(; )+—2|:El W(X2 Ly WEX )]:0,
Free End ot Ox ox Ox?20t
where E, I, ¢4 are constants. The transfer function is:
N(s) 2 1k
sN(s . s 3
H(s) = 5 with m(s) = [7}
(E 1+ scql)m>(s)D(s) El+cqls

N(s) = cosh(L m(s))sin(L m(s)) — sinh(L m(s)) cos(L m(s)) and

D(s) = 1+ cosh(Lm(s))cos(Lm(s)).

Parameter values: E = 69, GPa = 6.9 - 10'°/V/m? - Young's modulus elasticity constant, | = (1/12) - 7 - 8.5% - 10~ tm* -
moment of inertia, ¢y =5 - 1074 - damping constant, L = 0.7m, b = 7cm,
h = 8.5mm - length, base, height of the rectangular cross section.
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Plots

Reduction methods:

Frequency response of the original beam model

1. Modal truncation.
2. FEM followed by Loewner.
3. Loewner based on the transfer function.

Lirror plots

oewner reduced model
. fodal reduced model
10
10°
10° -
107 1
10
107
g g g i
10 10 1
Frequency(Hz)} 10° 10° 10* 10°
Frequency(Hz)
. Singular values of the Loesner matrices - Original bean madel . Singular values of the Loewner matrices FE model
10 10 : -
—Loewner —Loewner
— —s Loewne
10°
s
10
10"
10" 10"
. —_—
107 . .
50 100 150 200 250 300 350 400 50 100 150 200 250 300 350 400
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Outline

© Time-domain modeling and model reduction



Chronobiology and rhythms

@ Circadian (= circa + diem) or daily (24h) rhythms allow organisms to anticipate and
prepare for environmental changes and best capitalize on environmental resources (e.g.
light and food).

@ The 24h circadian cycle has been well described. It is involved in many metabolic
processes. Distortion of the 24 hour cycle has profound impacts on health.

@ Our goal was to find other cycles (e.g. 12h) of gene transcription (which is a signal from
the gene to a biological system).

@ Recall that tides are mainly a 12h phenomenon.
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Processing gene data

The data: finite records of yi,---,yn, resulting form gene transcription or RER (Respiratory

Exchange Ratio) measurements.

Basic model: sum of exponentials. Find «;, 8; € C, i=1,2,---,k, such that
y(t) = y*(t) + w(t) where y*(t)= Zf-;l a; efit|

and w(t) is the noise. Requirement: y(i)~y;, i=1,2,--- 6 N.

Alternative formulation: descriptor representation, using an internal variable x(t) € R¥:

Ex(n+ 1) = Ax(n), y(n) = Cx(n)+ w(n), with initial condition x(0) = xo,
where E, A € Rk*k x, € Rk, C € RI*k,

Processing of the data. Assume N = 2k; the data is used to form a Hankel matrix:

21 ¥2 v3 cee Yk—1 Yk Yk+1
y2 y3 va 000 Yk Yi+1 Yi+2
v3 va ¥5 o Yk Yk+2  Yk+3
H= g g 3 - g g 3 € Rix(kF1),
Yk—1 Yk Yk+l  ccc Y2k—3  Y2k—2  Yok—1
Yk Yk+1  Yk+2  ccc Yok—2  Yok—1 Y2k
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Define the quadruple (E,A,xq, C): xo = H(1:k,1) € R¥, C = H(1,1:k) € Rk and

E=H(1:k 1:k), A=H(1:k,2:(k+1)) € Rk*K ‘ (E, A) : Loewner pencil in time domain

This quadruple constitutes the raw (untreated) model of the data.

This model is linear, time-invariant, discrete-time, obtained with NO computation:

‘ Ex(n+1) = Ax(n), y(n)=Cx(n), x(0)= xo. ‘

Reduced models and fundamental oscillations: the dominant part of the raw system is
determined using a projection: M = Y(XTY)"!XT ¢ R"*" = E, = XTEY, A, = XTAY,
= 0O, % = XTxo. The associated reduced model of size r is:

‘ E-x,(n+1) = A;x.(n), yr(n)=Crx(n), x(0)=x,

e Orthogonality. The fundamental oscillations are (almost) orthogonal f; L f;, i # j.

@ Interpretation of orthogonality. Orthogonality means that the fundamental oscillations
are independent of each other.

@ Existing approaches: MUSIC, ESPRIT, Prony's method and statistical methods are
compared with the new method described above, called pencil method. NO other
method yields the orthogonality relationships.
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Results: RER for restrictively fed mice (218 measurements every 40min)

Mouse #1 Mouse #2 Mouse #3
A P T A P T A P T
0.0116 | 0.9961 7.4236 0.0196 1.0008 7.9904 0.0081 1.0023 6.0960
0.0256 | 0.9993 7.9961 0.0072 | 0.9999 | 12.3797 0.0170 | 1.0015 7.9728
0.0817 | 1.0001 | 23.9264 0.0866 | 1.0001 | 23.8401 0.0722 | 1.0010 | 23.8297
0.8843 1.0001 dc 0.8913 | 0.9998 dc 0.8941 0.9999 dc
Mouse #4 Mouse #5 Mouse #6
A P T A P T A P T
0.0151 1.0010 7.9423 0.0220 1.0000 7.9621 0.0149 1.0009 7.9535
0.0185 | 0.9995 | 12.2039 0.0841 | 1.0004 | 23.8567 0.0283 | 0.9930 | 12.4346
0.0904 | 0.9998 | 23.7697 0.0080 | 0.9978 | 55.5220 0.0891 | 1.0005 | 23.8193
0.9236 | 0.9997 dc 0.8897 | 0.9998 dc 0.9412 | 0.9997 dc

Approximation by 1, 2 and 3 oscillations

First 4 oscillations

Mouse #1

Mouse #2

Wouse #1: Approximatione

Moo #1: Oscilatons.
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Results: comparison of methods applied to gene data

Pencil method ESPRIT method Prony’s LS method
2354 genes 2350 genes 265 genes
@ = 1.005 - 0 = 0.001 @ =.988 — o = 0.001 =.934 - o = .001
N y e nrale Wegritud Distibuion of 20 Poles (mean=0 93397 var=0.00005266)

12

10

Mmm.l.m Al

9 092 094 096 098 1 102 104 106 108

8
6
4
2
0
0.

Conclusions

Cel Metabolism

@ The prevalence of 12h oscillations is 1 in 8 genes ST

@ The relation of the 12h with 24h rhythm: Independent

e Reference: Bokai Zhu, Qiang Zhang, Yinghong Pan,
Emily M. Mace, Brian York, Athanasios C. Antoulas,
Clifford C. Dacso, and Bert W. O'Malley, A cell-autonomous
mammalian 12-hour clock coordinates metabolic and stress .
rhythms, Cell Metabolism, June 2017. JOT—
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The European blackout: 4 November 2006

Power exchange Deviations of the power exchange and the frequency
w01
e Exchange programs ap aw) 1w
b Physical flows
22h09 600 5006
‘ ‘ »’J()‘ ‘;a» 0
(Y] E L
51 N 2
0| 7o as0f
T oy ol | G o

d
SR L W

- e
o AT

07
| 122 502l | ool | vosn 159] |
k3 12

a25} [aso0

12l M
2, = Slad 1 80
g e et
B2

215600
215700
20700

— e s oty — Nederand — porugal

Power exchange deviations in West area

A (poles) Al o (decay) T (period)
0.36297 £ 0.79436/ 0.8734 -0.13541 5.501
0.70901 -+ 0.64879/ 0.9610 -0.03973 8.478
0.88856 + 0.44051/ 0.9917 -0.00827 13.652
0.99516 + 0.17878/ 1.0111 0.01102 35.348

-0.46003 =+ 0, 94443/ 1.0505 0.04927 3.104
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Outline

o Summary and References



Summary: MOR in the Loewner framework

A Given is: time-domain, frequency domain measured or simulated data (DNS)

Examples Measurements
1. clamped beam n = 346 freq. domain
2. semi-conductor device no model freq. domain
3. Nonlinear Heat eqn n= oo freq. domain
3. Burgers equation n= oo freq. domain
4. Gene data no model time domain
5. European blackout no model time domain

Types of systems

Linear (SISO and MIMO)
Linear parametrized
Linear switched systems
Bilinear

General quadratic bilinear

A Key tool: Loewner pencil (followed by a projection).

A Given data, we construct with no computation, a singular, high-order model

in descriptor form = natural way to construct reduced models.

= SVD of the Loewner pencil provides trade-off between accuracy and complexity;
resulting model complexity n = (numerical) rank of Loewner matrix.

= can deal with nonlinear systems.

A Philosophy: | Collect data and extract desired _information |
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